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1 Introduction

This report describes the work cosductad by Atlantic Aerospace Electronics Corporation under
comtract NGEGOS-81-C-TM3 n support of NUSC's effocts to establish passive methodalogies
lee localization of noe-cooperating targets emitting high-SNR. short duration signals. Our
task was to evaluate the performance of various techniqoes for locating an acoustic emitter
under these conditions wsing measared times of arrivals at an array of acoustic semsors when
little = price: knowledge of the signal statistics is asmilable. This kind of passive Jocalization of
underwater Largets, termed wave-fronl carvatare ranging, can be accomplished by spatial pro-
cessing of signals received at multiple hydropbanes. However, the successful application of this
coacepl Lo signals of short duration depends upon accurately estimating the time-diference of
atrivals (TDOA) of the signal a2 several pairs of sensors. Comumonly, time-delay messurement
s accomplished by crosscorrelation of the received signals which is an optimum process only
when the signal duration is long compared with the signal correlation sime and the true time
delay. Short-duration signals make this approach problematical Another requirement is that
sccurate knowledge of the location of the sensoes be abtained, which bolds true for short- as
well as long-duration signals. We shall address these issues in this report.

There were three major tasks we set out to perform. The first task was Lo investigate
candidate algotithms, and i necessary, to develop an alporithm to relate the basic measuced
quantities, the pairwise time-delays between sensors, 1o the range and bearing of the sooustac
emmities. For a linear array, there are analytic expressions for the target range and bearing ax
functions of the time-difference of arrivals of a sgnal at multiple sensors located oo the array.
There are several instances of such algorithme for linear arrays appearing in the Bterature
and we used these ax our starting point [4] While these algorithms ace applicable to three
sensor arvays in cases where the srray is slightly dstarted from a straight line or where the
sensors are not equidistant, they are not appbcable to both. We extended the apphcability
of these algorithms 1o the more genersl case. It should be noted thai the thres-sensor case
is the minimum nember required to estimate range; more sensors could be used. Because
the range and bearing equations form a non-Enear pair of equations, an iterative algarithm
was developed. The algorithm was developed in the SUN MATLAB environment which &
canducive Lo developing and testing algocithms as well as performing numerical experiments
of modest size. The algorithm and its application to wave-front curvature ranging is discissed
im Section I bet its full derivation & given in Appendix A.

nmmnﬂmjmluimulmd]th:mﬁﬁﬁtpdhnhnﬁmmwmﬁmddq
estimation ersee and sessor location error. It is imtuitively clesr that inter-semsor distances



(arm-lengths} are an important factor in establshing localization accoracy. Closely-spaced
senmes introduce more degradation into the range and bearing evtimates and, in the limit of
zero arm-jength, no range estimate can be derived. Owur goal bere is to establish, for a few
significant arm-lesgths and source bearings, the dependence of range varisnce and rane hias
upon time-delay sccuracy and sensor position uncertainty. These results are range dependent
and therefore, we presest the results as a function of range. We v o present the resulls in
such 2 manser s 1o dearly show moch time delay error is tolerable for 2 given range ervor
which is seally the bottom line. The analyses were accomplimhed i & Moote-Carlo fashion
by caleulating the errors induced in range and bearing due to random errars in time-delay
and sensor position estimation. These simulstion codes were alio develuped under MATLAB
and incorporated the abovementioned range-bearing algarithm. This analysis is discussed in
Sections 3 and 4.

Atlantic’s third task was Lo investigate competing time-delay estimation algorithms for
short-duration slodsastic signals. We considered two such algorithms, the conventional cross
M{ﬂ:ﬂlﬂlmmwﬂﬁm&nﬂﬁwﬂilﬂk—um
one for short-duration signals The coaventional cross-correlation time delay estimator is an
casy and efficiest coe to implement in the frequency domain using fast Fosrier Transforms.
While it may not be an optimum operation in cer scenario, its structure i independent of
ﬁpﬂﬂhhdihmhmmmwbmmmhﬂ:huﬂlnmﬂ:nﬂkwh
wufficrent in a higher-SNR domain. Numerical experimests weee dose using this algorithm:
a single realization of a stochastic provess was added to an ensemble of noise sigoals and
eruzs-correlated for two sessors. Sample means and standard deviations of the time-delays
were then computed to give the desired TDOA statistics. Rather than using MATLAB,
this particular experiment was conducted using lools and commands implemented in Atlantic
Acrospace’s DAT-file language since they required extensive number crunching. These results
are discussed in Section 5.

The MLM method does depend upon the signal statistics since it requires computation of
the eigenvalues and eigenvectors of the signal covariance functice and a subsequent expansion
af the dats in terms of them. Extessive code was developed a2 AAEC to determine thise
quantities but Monote Carlo simulations have yet been done We hope to perform this in
fodlow-cn work. This analysis & discomsed im Sectios 5 and Appendix B,

The asalyses presented here are valid only for the simplest of conditioes and environments.
Only horizontal (1. homogeneous) channels are comsidered with no multipath oc reverberation
effects. In addition, performance when interfering signals are present or when the sgnal and
Boise statitics are non-Gasssian is not addressed.



Figure 1 shows 2 conceptual view of bow & range-bearing estimator might be structured. It
cansists of [our general compoasnts: (1) Wavelorm Segmentation Algarithm, (1) Time-Delay
Estimator, (3) Range-Bearing Algorithm and (4) Amay-Shape Estimator. The Waveform
BOOUslic sensors oulputl Lime series. Ench set of candidate time-series is passed into the Time-
Delay Estimator wiich determines, by correlation or other technique, the pair-wise time-
delays (TDOA) v and 7 which ase then input to the Range Bearing Algorithm. Asother
impartant input to the Range-Bearing Algorithm are estimates of the Jocations of the scoustic
setwors, &y, 5y and & This is wsually the output of some array shape slgorithm which may
u,hm&.huﬁﬂkﬂhmhﬂﬁuhmhuﬁmﬂhﬁtm
and comsequently the location of points on the array. There will necessarily be some residual
uncertainty in sensor position. Sensitivity of range and bearing to this uncertainty is discassed
below. We will show below bow much range uncertainty requiremests determine maximum
posstion uncertainty requirements. The work described in this report sddresses the functicning
of two of the components of this system: the Time-delay Estimator and the Range Bearing
Algorithm. The performance of the other two components seeds to be addressed in future
work.
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2 Wave-Front Curvature Range/Bearing Algorithm

The Jory den in wave-freat curvature localization is 1o use the differences of time af arrivals
(TDOA) of & signal at as array of sensors to compute the range and divection of the signal
source. |n actuality, it is 80 more than the concept of triangulation and can in principle be
solve for an arbitrary sumber of sensors (three or moee) in any configuration while using
two sensors can anly estimate bearing. The analyses presented in this report are based wpon
& three-element pear-fmear array a2 shown m Figore 2 In this case, analytic expressions for
range and bearing can be desived. I the times-ol-arrival of the signals at the three sensor
are denoted by ¢y, 8y and ¢y, the fundamental messured quantities are the time-difference of
nrrivals belween two pairs of sensors, vy = f; = 3 and & = t; — ¢;. The nominal sensor
gramelry is defined by the vectors £ and £ which point from the middle sensar {#2) to the
forward (#1) and aft sensors {#3) respoctively. The colinesrity condition is simply expressed
by I3 = —al;. No assumptions ase made concerming the relative lengths of the array arms;
s = oor for equal Jength arms. Under the best of towing conditions, seme distortion of the
array will occur. The quantities &, §; and & define the deviations ar distoctians of the sensors
from their nomisal colinear positions.

This section simply states bere the equations relating TDOA and range and bearing: the
full derivation is given in Appendix A. Range (R} and beasing (1), defined with respect to
the pominel position of the middle sensor (#2) and the sominal array directicon,are given by

.Nl_ﬂ !‘3]1'51 5+:& Lﬁ"’
['ll:ﬁ.r{-.ﬁ u]

(1)

cosfl =
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where &, &, § and § are certain linear combinations of the distortion vectors. These snd other
quantities are defined by:

Ninn) = %L:[: . [%]’n[l- (E)’)} (23)

L-5+1(8-F) (24)
& -5 (2.5)
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7= (5-8)-5(-38) (26)

i- (& +§z,) (2.7)

.lmimpqmmiqumlty:ppﬂrin;mmdmmimdlhnnn#qmmhihdmh&:
tme-diference
ﬁ'l-'=f;-—£—'r§ [13]
Simee both umhﬂfﬂ:mnm}rmitﬁﬁrﬁﬁminmmﬂqﬂuﬁq:ﬂd
gets smaller 2s (1) the range of the source increases and (2) bearing approaches endfire.
T&is limits the wsefulness of this concept under those conditions. It is pot the fault of the
particular algorithm but rather a fundamestal inability to messure these quantities. The
mdhﬂnﬂnism:ﬁummh}m&em The firet Simitation
can be remodied by increasing the inter-senser distance. The small sive of Ar makes range
dmmﬁmmﬁﬁmwmhmmudmiﬂhmm
position.

Figure 2 Source-Semsor Geametry for a Distorted Linear Array



3 Sensitivity to Time-Delay Measurement Error

This section analyzes the sesaitivity of range and bearing estimates to uncertainty in the mes-
sarement of the time-difference of arrivals (TDOA) of the emitted signal at the array sensors.
Small uncertainty n TDOA measurensests can lead o significant error in the estimated range
of the emitter which gria worse as the target range increases. This is due to the non-linear
imverse relstion between K and Ar. This non-linear relation brtween raznge azd TDOA also
miakes it more convenieat to study sensitivity ssues asing Monte Carlo simulation rather than
to attempt an analytic formulation

The Monte Carlo technique invol ves cermpirting the Lroe times-of-artival (TOA 's) of the sig-
nal at each acoostic sensor using a prescribed soarce-sessor geometsy. The meassred TOA &s
modeled 2s the true TOA plus a component which is a sample from 2 #ero-mean Caussian ran-
dom pracess. The random coemposents fur each sensee are independent | identically-disteibuted
{i.id.) and the mean of the measured TOA is the true TOA. The variance of each sensoe's
TOA is the independent varying parameter for each expesiment and the rample meas and
weriance of the computed range and bearing are determined as a function of TOA variance.
Since range and bearing arc actually functions of time-difference of arrival statistics, the TOA
variances need to be converted o TDOA varisnce. This is simple in the Gaussian nowse case
since 2 linear combination of Ganssian proceses is jtselfl Gaussian and the TDOA varance
in related 1o the TOA wariance o7 by by o7 = 207,

Because of the non-linear relation between the TDOA and range and bearing, range and
bearing statistics are pon-Gaussian, but their sample mesns and sample wariances are still
meaningfol expressions of uncertainty. Notice thas because of the son-linearity, the mean
value of the computed ensemble of ranges is bizsed.

Monte Carlo experiments were performed for several different scenarios: five different
tasgel rang== (1 km, 2 km, 5§ km, 7.5 km and 10 km) and two different source bearings (%0
degrers and 90 degrees (broadside] ). This was doe for three different array azm lengths (60m,
120 2nd 240m ], totalling 30 different scesarios. For each scenario, a compater exprriments
was conducted where the TOA standard deviation (o,) varied continsously from Zasec to
200@Esec, Fwﬂ#..mmmh'tmmﬂﬂ&dthumm
MATLAB's RAND function. Time-delays were calculated and passed into the range-bearing
algocithm %o give a compated range and bearing, Fromn these 4000 samples, mean range, range

ﬁmthdﬁtimﬂﬂf=h—ﬂ+ﬁﬂuhlppﬂlhﬂ&rﬁﬁhnﬁ:hﬂrlﬂpmﬁ-
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ances, a meaningiess reselt. le arder to provide meaningful statistics ca range, we eliminated
calculated ranges corresponding to very small or negative values of Ar. (Very seall values
of Ar give rise to very large ranges.) The choice of this cutoff is somewhat arbitrary when
zo a prion nformation about target location is given but 40 km was choses as convenient.
Whnmlpthﬁ:ﬂhnﬂ:ihrplhuﬁmk;imlmmmﬂmh
uwsed. Fimally, in this simmlation, Lhe azray was awumed to be colinear with no perturbatioes
of the sensors from thewr sominal positians.

Thehtﬁtmhsmpmtﬁiinlldﬂﬂgnphshﬁmihi Each plot, labelled by
ﬁmmhﬁhmdmhﬂ;ﬁnhmm%mdﬂﬁ%}
grow by arders of magnitude as TOA uncertainty increases. It is also clear that the range
variance dominates range biss. (Plots were drawn oo a logarithmic scale because of the large
range of values of all the quantities In order to present the hiases on a logarithemic scale,
their absalute values were used, hence the cusp in the biss plats where they changed sign).
An example of worst-case localization is shewn in Figure 3 for an array with a 60m sensoe-arm
and a source bearing of 50 degrees. [n order to achieve a localization errar of 200 meters for a
target at 10 km, TOA resclution showeld be within .06 millisec. Best-case lncalization is shown
in Figure § where an array with a 240 meter arm-lesgth is used and the source bearing is 80
degrees.

The final figure in this section (Figure 9) shows 2 worst-case bearing-error result and
Himﬂhmﬁngmhmwmmuwmﬂmhpmwrh
TOA's greater than ane millisecond.

Ancther way to state the results of this soction is to establish a Jocalization requirement
and to ask wha! measurement uscertainty is peeded to acheive that requirement. As an
example, il o= adopts 200 meters a5 a nominal localization goal, Table 1 shows the TDOA
messisrement accuracy (in milliseconds) reguired to meet this docalization goal. As one can
readily see fram this table, the requirements for 200 meter Jocalization at 10 km range s quite
siringent. [z order to localize 2 source at 10 ks using 2 240m array, coe has to resolve the
TDOA to within 3usec

12



Array | Incident Target Range

Length | Angle |1km 2km 3km 75km 10km

&0 m L A52 s 007 0Ig Lt
a0 252 66 o2 A0S 003

190 m a0 583 .18l 428 012 007
90* S84 208 T o 2

240 m ol 213 G688 19 o7 Q28
S0* 2608 114 180 iy i)

Table 1: Time of Amval Accuracy Requirements {millsec) for 200 Meter Range Standard
Deviation
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4 Sensitivity to Sensor Position Uncertainty

Just as errors in the measured times of arrivals of the roceived signals can significantly affect
the estimated range of the emitter, so do ervors in the assumed positions of the sensore. In this
section, this effect is quantified by modeling the sensor positions as fived but haveeng an added
random vector component which is sssumed Lo be a zero mean Gaussian process. Iespection
of Equation 2.1 shows that the mast significant contribution to range error comes from the
term f- & appearing in the denominator where & is a unit vector pointing towards the source
and & is a linear combination of sensor deviations defined in Soction 2 (It is casy 10 show that
@ = I when the distortion is dee entirely to a iranslation or rotation of the entite array; o is
noe-tero when the array s bemt). Errors in this term contribute to range localization error in
exactly the same way as errors in Ar for the time-delay semsitivity fssue. In fact, looking st
the desominstor term ¢As + R - &, one can estimate what order of magitude ertoes in Ar
and & are equivalest. A one millisecond error in time is approximately equivalent to & one
meder ETTOr in positian.

A st of mmulation experiments were performed to determine the effect of semsor ences-
tainty upon range estimation using the same scenarion wsed in the time-delay experiments.
The array was nominally straight and deviations from oo lnearity wers assumed to be due
to random perturbations of each seasor. The perturbations were represented by zero-mean
Gaussian processes which were independent fram semsor 1o sensor; the standard deviations
of each of these process were the same. Note that & &5 also a zero-mean Gasssian random
process. For each value of sensor standard deviaticon o,, 4000 experiments were dose and
sample mean range and standard deviation were compuied as a fenction of o,

The following series of plots (Figures 10 through 15} present range error s a fenctica of
unceriainty m seasor position. The error consists of a bias term which is inherently due to the
As we noted above, the resalis are not unexpeciedly similar to the results obtained for the
TDOA measuremest uncertainty.

Again, given some & prioel requirement on rasge loealization, one can ask what messure
ment uncertzinty is needed to achseve that requirement. Adopting 200 meters as a norminal
localzation goal, Table 2 shows the sensor position measurement accuracy (in melers ) required
o meel this localization goal. For example, & lom accuracy is needed to locate a target at
Wlkm wsing a 120m array.
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Array | Incident Target Range

Length | Angle | 1km 2km 5km T5km 10 km

B0m | S | 138 D% 007 003 O
90" | 29 07T M2 006 003

1M m 0 652 178  .033 A4 a7
90° |113 25 055 2 oes 002

40m | 50* [2611 682 .27 055 .08
90* | 432 1138 211 091 0S8

Table 2: Sensor Pasition Accuracy Requiremests (m) for 200 Meter Range Standard Deviation
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5 Time-Delay Estimation
5.1 Time-Delay Estimation Algorithms

As poted in Section 3, the wave front curvalure algorithm requires accurate estimates of the
time-deluy of arrival of the signal at pasrs of sensor beloaging 1o a three-sensors linear array.
In this section, we now investigate techniques that can be used 10 estimate the defay of s signal
arriving at two spatially separated sensors, S; and 5;. We consider the problem of estimating
the TDOA of & Gaussian random noise signal at two sensars when the signal = embedded in
independent Ganssian noise ot cach sessar. The signal, dencted by s(f), is not necessarily
staticaary The measured signal at 5, & the s=m of 5{t) and 2 andom noise componens n; ()
while the measared signal at S, is the sum of a delayed and scaled version of #[t) together
with random noise ny{1). We have

zylt) = s(f) + myit}
zdt) = Lalt — o) + nalt) (5.1)

We seek & value of d which minimizses the difference, in some nutural way, between z; and
2z Two approaches are consdered. The first & to choose that value of d which minimines
ihe mean-square-difference of the two signals. This 1= equivalent 1o Jocating the peak of the
cross-carrelation function of the two signals  The second method is 1o chocse 2 value of
which maximizes the hkelibood that the two sigaals are the same. While maximum likelibood
metbods have been used successfully for sgnaly baving large time- bandwidth product, we will
unplement 2 new formudation for short-duration sgaals due 1o Champagne, Eizenman and
Paaupathy ({1, 2|} and termed the CEP aigorithm. The choice of the appropriate method of
time delay estimator will be decsded upan using Monte Carlo analysis of repeated trials.

5.2 Correlation Method

The carrelation methed involves computing the crom-correlation funetion of a samphed versian
of the continwous signal received at two spatially separated sensors. The locatioe of the
peak of this function gives directly the time delay of one signal with respect to anothes.
However, finding the peak of the discrete correlation function of two discrete signals is pot
optimmumn as the true delay may not be an integral number of sampling intervals. We choose
as a nominal samphing imterval, 10kHz. The time-delay sensitivily analysis indicates that
good fange accuracy puls stringent requiremens on allowable time delay errors. Since the

Fa ]



sampling rate of the system under study is larger than that allowable srror, we follow the
prak determination step with as interpalator o estimate its true peak.

In our experiment, we modelind a discretely sampled sgnal received at two different sensors
but delayed in time from one sensor to snothes.. We began by coastrecting an easemible of 200
ume series for each sensor. Each member of the ensembie was the sum of a naise component
azd a signal component. The noise was generated from a single 400,000 point Ganssian white
eoise sequence obtained by a call to a MATLAB routine. This whole sequence was divided into
w0 seguences of 200,000 pomnts (one for sach semsor) and each of these series was divided into
200 experienents of 1000 points each, This represents 0.1 seconds at a 10,000 kHz samplisg
rate. The noive power is by definition umity.

We defined the received signal st each sensor by a Gaussian white noise sequence of 0.1
secomd duration and 100Khz sampling rate. By delaying this signal an integral number of
samples of the higher sampling rate, we can model a delay which is not an integral number
of low-rate sampling intervals. For 0.1 seconds, we bave 10000 samples. We filterad this
sequence through a firvl-ocder AR filter defined for three different bandwidths: BW = 5KHz.
1KHs and 2 KHr snd foe four SNR'= | ¢B, 4 4B, 7 dB. 10 d4B. A copy of this signal was
made but shifted by 3005 samples at the higher sampling rate. Each signal of the pair was
then decimated by a factor of 10 to mateh the sampling rate of the noise. giving 1000 samples,
and added directly to cach sensors noise ensembile.

The continnous signal was modeled 25 2 first-order astoregressive random process having
&= aulocorrelation functions and spectra:

Rr) = Pe¥ (5.2}
2aP
= e a3)

The correlation time of this signal i defined by
1
Ta = (5.1)
Is order to discretize this process, we define the sampled autocorrelation function
Ry (n) = P~ (5.3)

where T is the sampling interval. The discrete spectral density Function comes froen taking
the z-transform of Lhis function and takes the form

14 A2

{HI] L Pl-—-:’ll:-{-z":li-.rlj

(5.6)
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where A = exp{—aT|. A first-osder discrete filter which generates 2 sequence having this
sutocermelation function from & Gavssian white maise peocess takes the foem:

B
1-— At

=Pl - 4% (38

The quantites A and B are chosen 5o 25 1o give the desired bandwidth and signa! gain. Table 3
reiates the bandwidth and signal correlation tirne (in samples at 100 kHz),

Hiz) =

(3.7]

e

BW (Hz) r{sumples)
500 53.14
1000 2757
000 13.80

Table 3 Basdwidth and Correlation Time

An estimate of the cross-correlation between two signals over a finite observation time is
obtained from the quantity [5:

- & | r
Brealdl = 57— [ multimale - dyee (5.9)
or in terms of discrete sampling:
Wy
Reas () E PR {5.10)

ln the conventional cross-corselator (CCC), this quantity can evaluated in the frequency
domain using the well-known coavalution thearem. Two Enite kngth sequences are converied
to the frequency domain using dscrete FFT's. The corresponding sequences are then multi-
plied element-by-element. By taking the inverse FFT of this sequence, we arrive st /1, (d).
This gives the cross-cocrelation an the discrete time grid defined by the sampling of the sensor
outpuis. A coarse measarement of delay 15 made by finding the peak of the cross-cormelation
function. Using an 11-point Lagrange interpolator_ a finer peak kaalization was made by in-
terpolating the cross-correlation funclion at & mesh of 10 times the sampling rate. The results
of the 200 experiments are summarized below in terms of the sample mean delay and sample
stendard deviation.
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S5KR |dB) | Bandwidth (KHz)
5 1 2
10 0.8 62 o2
(98 [77) [75)
0.6 0]l 05

=l

(1.4) (122} [.98)

4 0.1 0.0 [ B
[2.40) (1LB2} ([1.44})

| 03 -09 Lo

13.79) [2.46] (2.08)
Table 4: Mean Delay (and Standard Deviation) {in ssmples at 100 kHz)

This table shows thet even at Jow SNR's and small bandwidths, fairly good time-delay
estimation can be achieved The largest standard deviation (at | dB SNR and 500 Hz BW)

iz Bgvec whach corresponds to & range error of 2000 metess at 10 km but oaly 20 meters at
2 km (for 2 190m arm-length arrav).

5.3 CEP Algorithm

The CEP algorithm was developed 1o solve the maximam Bkelibood estimation problem when
ihe duration of the observalion interval 13 small 25 compared to the signal delay and autocor-
redstion time I a signal arriving at two sensors is represented as & vector process by

xit.d) =s{t;d) +nlt), 0<t<T {5.11)
where
s(t;d) = [ Ll:'_' ﬂ] (5.12)
o m(t]
n-il!=[“ﬂ} (5.13)

then cne can expand x{t;d) in terms of eigen-2-vectors ®4(¢) of the vectar correlation matrix
Rair).

xit;d) = 3 (L®1) (S.54)

=0
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o
G= [ Rliepide (5.15)

and are, necessarily, encorrelated. Such an expansion s called a Karhunen-Loeve expansion.
The eigenvalue equation satisfied by ¥ (t) =

I
£ Rolt - w;d)Wifulds = 4 Waft), 0<t<T (5.16)
and the normalization conditics
F "t = by, (5.17)
The zero correlation between the expansion coefficients lets us define a log-likelihood function
of the form e =
hﬂ{::d’j-;(hzli*hd—-zhﬂ-khl) (5.18)
- ¥ k=1

aond the MLM method is 10 choose d as 10 maximise the log-likelibood function
CEP show that Equation 5.16 can be reduced 10 a scalar equation

f_: Rt — wiinlujplujds = hgnult), —-d<t<T (5.19)
with i) satufving the normalization conditian
T
[ wtmteipitia = 8 &)
where p(1) is defined by
l, —-d<t<
|-[~¢I=Il b<t<T-d £5.21)
l, T=d<t<T

and where the vector esgenverions am related to the scalar coes by
wult]
Qult) = Iﬁ{l—il
CEP give a procedure for solving Eguation 5.19.

Eigemvectors and eigenvalues depend upon the details of the random process defining the
signal as well as the delay 4 wo that the agenalue equation must be solved for each proposed
value of d. This makes for & rather complicated processor. Furthermare, an infinite sumber
of terms appear in the log-likeihood function o that some natural cutoff needs 1o be defined.

(5.22)

1



An zlgocithm for caleulating the eigenvalues and eigenvectors is present in their paper. Our
waork is 1o adapt their algorithm to the statistical process coesidered here.

Appendix B describes the calculation (implemented i MATLAB) of the eigeavalues and
eigenvectors for a signal whose statistics are the same as that wed for the conventional corre-
lator. We have not yet extended the codes to the problem of expanding the signal, calculating
the log-likelihood function, and comparing the perofmasce to the conventional cross-correlator.
This will be performed in later work.

5.4 Full-Wavefield Propagation Models

In erdes 1o extend our analyss results to more comphcated scenarios such as those invalving
wultipath or dispersive propagation, we bave developed the capabality at Atlantic Aeraspace
of using an excellent propagation model, OASES, developed by Hearik Schmidt. The ODASES
package includes transmission-loss calculation codes and Seld propagatios codes which can
take mto account a wariely of emvironmestal parameters such as surface loss and bottom
mieraction. QASES is a full-wavefield propagation model in that it numerically integrates
the scalar wave-equatsin. It alw contains an interactive display program. Figure 16 below
illustrates the use of OASES to sbow bow a sgnal is propagated to different ranges. It shows
2 signal propagated from its sousce to four different rangs The chasging shape is indicative
of interference between 2 direct path component and a surface reflected component.



Example Time Domain Waveforms
Observed at Multiple Sensors
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6 Summary

The objectives af this task were Lo eatablish acoeptible time delay and sensar position re
quirements in arder 1o meet reasonable target localization gosls and to determine the best
algarithm for achieving the timedelay resolution requirements. Our work provides prelim-
mary characterizaticns of these reguirement under a restricted, but ressonable, st of soe
marics. The extension of these analyses to more comgplicated situations i the goal of future
work. What will be of great value in future work are the algorithms and software we have
developed at AAEC lo do shori-duration maximum likelihood estimation and generalised
ssymptotic maximum-likelibood estimation and to study the performance of these and other
algorithms i, for example, colored noise, non-Ganssias noise, or in the presence of nterfer-
ence. In addition, using OASES we have the capability of analyzing the efects of multipath
and reverberation. Finally, and perhaps most importastly, we are now capable of using our
algorithms and software to analyze real duta

The fandamental analytic conclusions of this report are that localization i difficult at
long ranges (> 7.5km) for the bandwidths and sampling frequencies comsidered and entirely
feasible for closer ramge. This liolds troe for the conventional cross-correlatar but whether
thix hold for the CEP algocithms remains to be seen. As we saw in Section 3, time deday
resolution must be an the order of several microsecoads in order to localize & source at 10
km using & 60m array arm-length and about 10 microseconds using xn array with a 1%m
array arm-length. The asalysis in Section 5 shows that coe can resolve time-delay to about
10 macrosecoads at 10dB SNR for a 2kHz bandwidth sgnal and 1o about 40 micruseconds foe
a 3kHe signal at 1dB SNH. This means that, at short dstances, (< 2km), these results are
mure Lhan adequale and st moderate distances, (3 — 7.5km), this resclution is adeguate for
the 120m asm-length array but not for shorter arrays.
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A Wave-Front Curvature Equations

This appendix gives the derivation of the range and bearing equations from time-defay and
scoustic senser position measarements (recall Figare 2 in Section 2 for a description of the
geomelry. |

E

i

Slamt range vector from Sensor ? naminal location Lo souree,
Unit length slant range vector.

= Range of source where f = R

Nominal vector from Semsor 2 to Sensor 1. Ly = ]
Nominal vector from Sensar 2 lo Sensor 3. £; = i)
Sensce 1 offsel from nominal location.

Sensor 2 offsel from nominal keation.

Senwr 3 offvet from nominal location.
Vector from scteal Sensor 1 to source.

Vector from actusl Sensar 2 1o sonrce.

Vector from acteal Sensor 3 to source.

hn how M L]

oz 2 8 S B B i o B
i

Basic Equations

i we amiusne that the signal was emitted by the warce at ¢ = [, them we can define the tine
of arraval (TOA) at the each sensor by . I and £, These times are related 10 the magnitodes
of the range vectors by:

t = (A1a)

h = (A1)

Iy =

o|@n|@n|B

(A.1c)

What is important for lime wave-frost curvature ranging is the time delay between pairs of
sensors. Actually, for threr semsors, we seed two pair of delays. We choose

" = l;-lj Eﬁ“—.h'l'
T ow fy=1Iy (A 2h)
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The relations between the nominal ranges from sessor to target are essy to derive from in-
spection of Figure 1. They are

R=L+b+ R (A.2a)
R = &+R [A.3b)
-ﬁ - I:‘l'i;-l--ﬁq {A.3c)
The collinearsty of the array 1 expressed by the simple relation

L+al;=0 (A4}

ek L
.= (A.5)

iy

We can use Equations A1 and A3 1o define the times of arrivals at the nosninal refeence
sensor (Sensor T},

o = [Af

- Hb-4f

= BsL2+8-28 L +2L, - & -28.§ (4.6)
Al = |&f

- |fu-if

= B+8§-2R-§ [A.T)
o4 = |&f

= |&-L-&

= B+ L+8-2F . [,420;-5,-2R-§ [AS)

Substituting Equations A6 and A.T into Equation A.2 gives

=R+ 1} +8-28. [+ -5 -2R-5, - R+ 8 -28.3, [A9)
if we asmume that the ranges 10 be meassred are much greater than any of the sensor

displacements then the second term oo the right-hand side can be expanded in a Taylor
series 1o terms of firt order in /R and the brought over 1o the beft-hand-side. Thes

8



Ve+8-27 & - R\IH(E)’_._,&-E

R
= R-R-& (A.10)

Bringing this term over to the left-hand side of the previoss equation and squaring gives

len+ R+ B- 6=+ 11+ 8-2R-T,+2,-5-2R-§ (A.11)
We can expand the sqmare on the left-hand side to yield

(el + B+ (R-&) 22em B-2em BB -2 8, = B+ 1348 -2R [, 420, §,—20.8, (A7)

Terms involving B cancel out and we collect all terms invelving R on the lefi-hand side

R{2en +2R-(§ - &) }42R-L = ~(en P+ I} 4 8320 B2 E- (R-8) (A13)

A similar result for =3 = 83 — ¢, can be obtained by simply substiteling

s3{= —73) for
L L,
& for &
in Equation A.13. Then we get
R{2es: 4 2R (5 - )} 428-L = ~ (P + B+ 8+ 2L B+ 2emB-B— (R-8)7 (A1)

Range Equations

Equatioss A.13 and A.14 are nal guite mtisfactory because they contain terms of the form
R-L; and - I; which ase celated to the source bearing. We would like these equations 1o
be bearing independent, at least to first-order. To achieve this, we divide Equation A.14 by o
and add it to Equation A.13 and then invoke Equation A 4. We get

R{2(n+2)s2m [ -8)+ 2 (5-8)]} =
AL R R R LOS I
oL, - (h—8) + 2R ~L(n +.§==] B . {ILE]’ (A.15)
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To get at our final result, we introdoce the following sotatics

T 4
Nir. 5 = %L:{l—(iﬁ.) +n(]- ‘;__—':])} {A.16a)
Ar = 11-§r;-r=.+§:; (A.16h)
@ = b-h+z(B-8) (A1)
B = b-b (A16d)

Then Equation A.15 bocomes
g Ninmit L-dick Bar+ i+ 18 -2t (R-G)

i A
(2ear + &2 &) V)
Neglecting terms of second order in [4]* gives
EZNITI+’1|+£I'J+¢E*I13’ (A.18]

{Mr-lrﬂ'-ﬁ'}

At thas poant it s worth noting that / is still coupled to the bearing and through the teems
in the dencminator and numeratar involving & but this is only due to the perturbation in
the array shape. The term m the denominstor is the mmst critical since the dencminator is
usually a very small term. Whens & = 0 this term vanishes. & is 2 measure of the deviation
of the array from co-finearity. Bt 3 2ero even if the array is transiated or rotated from its
pomamal posit ion.

Bearing Equations

To derive the equation for bearing, we start again with Equation A.13 and A.14 which cam be
re-writien as

W-Li=—(enf + L 42L&+ 20 R-6 - R{2en +2R-(-8)) (A19)

W-h=-(nf+G+2L-5-2nl &+ R{2n -2k (6-5)}  (Am)
Dividing Equation A.20 by o* and subtracting from Equation A 19 gives
EE-(L-éL}=

£l



~ten) ¢ e+ (G- Sa3) +2(L-d- 50 &) s 2e(ne3n) R &
R {e(n+5n)+ k- (R - ) - 54 (5-8)) (a21)

Again, we me Equation 4.4 to simplify this equation and alss introduce the notation

Iﬁ-.ﬂx = KL, cosi} (A22)
5= (h-&)-%(R-2) (A22)
; 1
Then, we see that
(42 -
~2Re (r; + %n) —{en) + %‘lfﬂ]' +2L, -
+3:(r.+.,lr,)ﬂ-i;-lllﬁ-i' (A.25)
Dividing this equation by R and L;, we get
oos ) =
e B 1 e~ i 1 i 1 =
Lo () mmaeT O R
i -
ﬂll“l’](ﬁ-'- Jﬂ E:-l-i-“:] i G
If we now copsider the colinear case. thet we bave the simpler equation
£ = | e a : |
Tl e o BT L) il



B CEP Algorithm

There are two basic parts in solving the maomum Bkedihood equations as posed by Cham-
pagee. Exenman and Pasapathy (2] |from now on referred to as CEP), The firt part is to
sclve the reduced integral squation to yield the cigenstructare of the stationary process aft).
The second part is to write the fkelibood fuscton using the coefficients of the expansion of
the process in terms of these eigenfunctions. This appendix describes the algorithm as it i
applied to the particular signal representation given in Section 5. We follow the steps of the
algoithen given on pages 1249 - 1230 of [2].

Solving the Reduced Integral Equation

CEFP show that the rigenvector solutions of the reduced integral equation 5.19 take the general

form
vall)] —d<t<

Wit = dalt] 0<t<T-d (B.1)
valt] T-d<t<T
e D% 2} Pis) — Quls)

Yal®) = = D) - M) =
Quls) + e~ T NQ{—s)

Yolo) = =B N il

Vals) = T~ 0,(—s) (B.2¢)

where ¢; = 1 and 0 < A, < 4Pfa. The solution of the reduced integral equation becomes
one of determining the polynomials [ (a), Fils), Qa). the cigenvalom 1, and «,.

Canonical Factorization
The first step in finding the eigenvectors o to factor the power spectral demsity to Gve I ()

We have assmined that the signals are shart segments of 3 Gaussian random process which
has an aylocorrelstion function given by

Ru(r) = Pe™¥ (B.3)
and its correspanding power spectral density
Culer) = 3P  NP) (BA)

Frat D)
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where we define the sumerator and denominalor polynomials

N{uw*} = 2aP
D) = 407 {B.5)

In terms of w?, the degree of the polymomial N[-) is m = 0 and the degree of the polynomial
ﬂ[-}hn:lrﬁ&mﬂmdt&mﬂimi&pﬁuﬁ&ydlhuw-}n
The canonical factoriation of the polysomial [u?) is sccomgplished by continuing it onto
the complex s-plane by letting & = jw, factoring it into its roots, and collecting together all
rocis on the lefi-hand side of the complex plane into D¥(+} and collecting together all routs
on the right-band side of the complex plane into D—{s). We have

Dis®y = —s'+40°
= (-s+a)(s+a) (B8)
The zeros of Dis®) are at 5 = +o which gives the canomical factorization

D¥(as} = 240 {B.7a)
ﬂ't.i] = —4a !B:ﬂl}

Denominator Structure

We now ook at the structere of roots of the polynomials in the denominators of equation B2
Defining, for general D{s?| and N|&%),
Wils') = AD(s*) — N(#%) [B.%a)
Wils®) = ADA") — 2N(6°) {B.8h)

For asy valoe of Athere are, in peneral, K serces [51a{A)) of W) [#*) of muitiplicity my, where

k=1, K, For Wi(s"}, theee are, in general, K; seroes (sn())] with mubtiplicity mazs,
k=1,..., K.

Simce, in our case, Wi(-) are pulyncenials of degree ane in »°, the roots of Wi(s?) as »
funclion of A aze given by

Hjy = -'—“ll!t'!—%'f. l‘;ﬂ.—g}



and for Wy s'). they are
fax

b = poaf = ——

A

i -J..:-"'“TF_ (B.10}

The roots 3y and ;3 are purdly imaginary for § < A < 2Pja and real for 2pfa < A < 4Pfa.
The rools 53 and sy are purely imaginary for the entire domain. In our case, every value of
A, Wi(a") has two distinet roots of multiplicity one. The same is true for Wi{s"). Notice that
the mots mtisfy the condition that they are symmetrically place abaut the resl and imagimary
axes. For our particular sutocorrelation function, K, = K; = 2 and my; = my = | for the
k-th root.

Numerator Structure

CEP show that the two real-coeflicient polysomials, Pla) and Q(s). take the form

Pls) = mepads ciep, o™t (B.1la)
Qis] = m+gr+ -+ guagr! {B.11b)

where, in our exarmnple, n = |, s that

Pls) = m (B.12a}
Qis) = g+ {B.12h)

The sumeralom in equation B.2 then take the form ln our case,
nls) = Mstalm-—qu-as (B.13a)
galse) = @t g+ T g — g4 (B.13b)

CEP show that if palynomials P{-) and Q(-) exist such that the singslarities in equation B2
are removable, ther the cigenfunctions exist. They equate this condition to the solstion of a
particular set of simulianeons equations which we now describe.

Each distinct root 53( 1) gives rse 10 a st of squations:
i slA)) =0 (B.13)

k]



where the supersenipt ! demotes the derivative of the function with respect to s and whese
I=10,--- my - 1. Semilarly, each distinet root sgld] gives fise to

of (sl d).e) =0 (B.15)

where [ =0, --- .my — L. In our example. all roots bave multiplicity one so that [ = 0 and no
derivalives are imvolved. We then get the set of simultaneous equations

sy +alm-—q-qsn = 0 {B.1¢a)
st alp-qu—isz = 0 (B.16b)
ptmen de T e _sen) = 0 (B._16c)
Gt man e BTN gen) = 0 (B.16d)

This systesn of equations s a function of ¢ and implicitly a function of A thiough the terms
sl ), aia{A), 833(2) nnd sl d). At first glance, this i+ » system of four squations for thees
unkuowns py, gs. @y However. the last two equations are not independent since, given the
symmetry condition sy A) = —aga( M), the third and fourth equations are the same. A similar
degeneracy bolds for the general case. Thus we have three equations in three unksowss, which
we can re-wrile in malrix form.

ﬂl‘t’l‘l +al -1 =g P
L E —1 — g3 =0 (B.17)
0 (14 ee™miT=0) 4. (1 — gemnaiT~d) o

The systemn has ne aos-trivial solution unless the determinant of the matriv vanishes which
happens for certuin discrete values of ¢ and L It is essy to see this is troe when 5y, = 0 for
¢ = ] for then the fint two rows are ddentical. The value of A in that case = 2P/a. Other
values of A may exist for which the determinant vanish. These may be oblained sumerically.
An explicit expression for the determinant s

A= 2{1 + I'-l!ﬂ'ﬂr-ﬂ.'l' {-l:.ﬂnh-h i + “IIWII]-'I‘]]'{J =+
2oz} = 2”79 (o sinhsyyd + sy icoshiag d) (B.18)

Figure 17 shows a numerical computation of A for ¢ = +1 as a function of A in the range
001 to 80. Thiswas dope foc the caze T = 1. d = 07, P = | and o = .5. Notice the nuells
for both values of « at A = 2Pfa = 4 and ancther mull ot A = 19 for ¢ = 1. Figures 18
and 19 show A for the ranges 107° w0 8§ - 1072 and for [07% 40 8 - 105, These plois show
the increasing number of nulls as A goes to zero. While thers are an infinite number of
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roots. their contribution to the log-likefihood function diminishes as A goes to pero. Hence,
we need anly consider a finite number of thems, The exact conditions for truncation need to
be determined. We can write the equation A = 0 in a form which allows us Lo make some
slatemests concerning the location of s mot strocture. We have for ¢ = +1

tanh ;4 4 =
_—-+-a-=|l|.

i
sntanh ST~ d) = _'“ﬁt-ﬂi-lui'-lrl (B.19)
while for ¢ = —1, we have

Using the fact that the nulls of A caly occar in the domain 0 < A < 2Pfa, sy, 953, o5
and 433 are purely imaginary and we can write them as 5; = 0 and 55, = b, etc. This leads

to, for e = 41
tan(ed) + £

: faned) +1 Y

I
iumiE{I‘-iI} =4
while for ¢ = — |, we have

tan{ed) + £
2 tan{ad) + 1

These equations can be soived numerically to locate the roots of the determinant

When the determinant vanish, one cas solve for two of the coefficients (py, gu, 41 ) in terms
of the other ome. The remaining coeflicient is determined by a normalization condition an the
eigenfunction.

b
boot(3(T —d}) = —a (B.22)

Computation of Residues

After solving for po. g9 and g, we can write

waft) = TP, gﬁ{E‘JzE!ﬁ'IﬂLmﬂ —-d<t<h

Lk Yait) = tﬁ.h{%}mm 0<t<T-d

(B.23)

mmimuh::mnlmmaqthemiduuthnmuﬁﬂﬁmm.-li'-.{-}. The index i
reders to a particular set of values (A, ¢, ) which are solutions of equation B.18. For each such

4



sel, we have two roots sy and sy of equations B.9 and B.10. Defining

b
F T
0, Mn ~

.

A

Wils™) = =Als = ia (s + ie,)
Wils®) = —Me— ik)e+ i)

and the scalar eigenvectors take the general form
it} = -i (ﬂc.it+ib+§:h..(l+ﬂ}
| .
alt) = = ; (%rml+nmﬂ}
and where ¥5i!) is determined by the ssmmetry conditios:

':!'ri'"' - li"'l{!. ~ - ﬂ'

(B.24a)

(B.24%)

(B.25a)
[B.25b)

(B 2a)

|8.260)

(B.27}
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% CALC STAT computes the bias end standard deviation of measured range as a
i function of parameter noise standard deviation.
% The steps of this process are:

G) Set up cuter loop of rsange for fiwmed bearing.

1) Set up vector array containing position of source as a function
of range and bearing.

2) Set up 3 vector arrays containing nominal position of receivers.

The source position is defined by the range and bearing with respec:
to the nominal center of the array.

3) set gp 3 vector arrays containing known offsets of true receiver
positions from nominal positions.

4) Calulate tTroe time delays based upon true geometry.

5) Calculate measured range and bearing when receiver positions and/ec
tine delays are randonly varied.

&) Write the pertured parameters and perturbed range/bearing to an
array.

7) Plot the array.

Created 16 July 1991, Ben Rosen, Atlantic Aerospace Electronics Corp.

Modified 22 July 15351 to loop over multiple ramges, and alsc processes are
now wectorized

RANGE = [1000 2000 5000 7500 10000);
ne = length (RANGE);
MAX RANGE = 40000.0 % meters

toedring = 90; \degrees

bearing = 50; %degrees

DE = 0; tdegrees

thrg = pi/i80*bearing;

f0E = pirlg0*pE;

V0nit wvector to scurce location

fu = |cosirbrg)*cos (cDE) sin{rbrg)*cos|rDE) sin(rDE)];

LEN=§80;
RLEN=124-
LLEN=240;

LB N T T T T T

i SET UF ARRAY GEOMETRY
xra = {-LEN 0 0]; ‘merers
xzrm = (O 0 0);

xrf = [LEW 0 0};:

i1 OOMPUTE GATE VALUE BY SETTING UPF MANIHDM RAMNGE

x5 _gate = MAX RANGE®*ru + xrm: V cartesian location of maximum range
% Compute nominal array leagths

11 = range(xxf,xrm);

11 = ramge (xrm,xra);

a= 12/711;

c = 1500; Wmeters/aec
iFISIM =— 1)



cand (*oormal” ) ;
nt = §000; WWumber of samples per sxperiment

SDEL 516G = .02; % millisec

SMAX_SIG = 2.0; % millisec

MIR 51G = .0005; % millisec

MAX SIG = 10.0; % millisec

B3iG = B0;

faigmataup = DEL SIG:DEL SIG:MAX SIG;

sigmatau = logspace [loglQ(MIN_S5IG), logll (MAX_SIG),NSIG);
signatau=sigmatau’ /100C.9; % transpose and convert to seconds
frs,ce]j=sizeisigrataul ;

SIGLOOP = r8; tHumbar of different variances

L

[taul gate,taul gate] = taus|xs gate,xrfd,xrmd,xrad,cl;
Hdelta = taul - taudia;
GATE = taul_gate - taul gate/a

nl = randint,1);
nZ = randint,l):
a3 = randint,1);

datar biaa = [];
datar std = [];
datab bias = [];
datab std = [];

\OQUTER LOOP OVER RANGES

for n=i nr:
eog = RARGE {n}
clear tauisav;

A CALCULATE SOURCE POSITION;

X3 = rAgiru ¢ XIm;

L

\ Compute true time delays
L

[teul,taul] = causixs,xrfd, xrnd, xrad, c) |

%t Compute approximate bearing using far-field bearing eguation.
¥ Solve for approximate range and bearing using far-field approx.

meas brg = wic beavingi{taul,tau2,c,11,12,df,dn,ds,1000000,DE);
% Is 1000 km far encugh?

t‘mls_rng = wic_range(tacl,tan?,c,11,12,df,dn,da,neas brg,0.0);
r_bias = [1;

£_std dev = []:

b bias - [},

b std dev = [];

FINNER LOCE OVER NODISE VARIANCES

for isig=1:S5ICGLOCY;

rand (" seed' ,0);

% Create reTro BRan poise vactors

noisel = signatau(isig)vnl;

noise? = sigoatau(isig) n;

:tntn! = gigmataul(isig)*n3;

tanlp = tasul*ones(nt,l) + noisel - poimel;

tanin = tsdieanedfnt . 7Y + Anica? - peimaT

=l T



delita = tanlp - tanZplfa;

b = wic bearingitaulp,taelp,c,ll,12,df,dm, da, abs imeas _rng),DE) ;
r = wic_range{taulp,taulp,c,1l,12,df,dn . da,bearing, 0.5} ;
magsk = ((delta-GATE) >= 0.0);

factor? = 1.0/mean (nask) ;

factor = aqrt (factord);

r biss(isig) = mean(mask.*r)*factor? -~ cng;

b bias(isig) = mean{b) - bearing;

£_std dew(isig) = stdimask.*r)*facrors;

b_std deviisig) = stdib);

end;

iEND INNER LOOP

datar bias = [datar bias r_bias"];
datar std = [datar std r_std dev’|;
datap bias = [datab bias b bias”)

¥

datab std = [datab std b_std dev'!

LE3

end;

' EXD OUTER 1OOP

%

sigratau = 1000*sigmatau; Vconvert to milliseconds.
ACLEANDUP

clear nl; clear n2; clear a3;

clear noisel; clear noisel; clear nolsed;
clear r bias; clear r std dev; clear b bias;
clear b_std _dev; clear r; clear b;

clear mask; clear delta;

clear tzulp; clear taulp;

end;
clg;

lim = [logl0(MIM SIG] logld(MAX SIG) 0 £];
axisi{lim};
kbtivle = sprinrf (*RANGE BIAS vs TIME DELAY UNCERTATHTY" ) ;
Estitle = sprintf("RANGE STD. DEV. ws TIME DELAY UNCERTAINTY');
stitle = sprintf("TIME DELAY UNCERTAINTY SENSITIVITY (metersi”®);
subplot (211);
loglogisigmatau, abs (datar_bias));
fritlelbtitlel;
title(aticliel;
xlabel ("Time Delay Std. Dev. {(msec)’):
ylabel ("Range Eias');
% vrite out anpotastiocns
xz = ,01;
ys = .025;
® = sprintf('Bearing = %3.0f (deg)’,bearing);
text {28, . y5,5,'3¢c" );
¥s = . 005%;
& = sprintf (' Sensor Spacing = $1.0Ff (m)*,11);
text (x5,78,5,"3C"1;
grid;
imeta junk;
sebolot {212)
loglogisignatau,datar_stdl;
ftitledsticle);
¥xlabel ("Time Delay Std. Dav., (msec)’);
yiabel ("Range Sigma®);
V\ write oot annotations
xs = _01;
¥=2 = _045;
3 = sprintf{°Bearing = ¥3.0f (deg)’, bearing);
TEXT (XS, ¥85,;85,"s5C" ) ;
ys = .017;

e _ﬂ'r]"_"_:'!'r"":.lr':.p--l:ﬁn— Erigm"em — 87 05 ey ¥ Ty .

e



L] Text [xs,¥s,5,"5C" );
geid;

imata;

brprint (" junk” )

subplot {111} ;



function b = wfc bearingi(tacl, tauv?,c 11,12, d4f, dm, da, rng,DE]

F T L N

fuonction b = wfc bearing(canl, tesl, g, 11,12,df,dn, 42, rng,DE)
Computes bearing to target using wave_froot curvature
eguation.

INPUTS
taul - measured tine delay of sensor 1 relative to sensor 2
tan? - measured time delay of sensor 2 relative to sensor 3
e - speed af sgund
11 - nominal distance from zenmor 1 to 2
12 - nominal distance from sensor 2 to 3
rng - CANgE 1O target

Created: 1 July 1951, Gen Bosen, Atlantic Aercapace Electonics Corp.
Last Modified: 1 July 19%1, Ben Rosen

- 32F11;

ap = a/ia+l};

£l = o*a /137 {1+a);

gasma = df - dm - 1/a"2% |da-dm);

xi = df + 1lfa*da;

2 = taul + vauld/a*d;

rDE = (pif180.0)*DE;

cos brg = =f1*(f2 - 0.5c*(taul.*tanl + tan2.*taul/a/a)./tng);
b = acos{cos_bxg);

Irom, col]=size (B);

cons = sin(rDE) *ones {row,col};

ra = [coa(d).*cos(rDE) sin(b).*cos(cDE)];

2 = [ru consl;

£3 = ap*xl(l)/zng;

£4 = c*ap/eng/11%£2 . *{ru*dn’ };

EX = — ap/liv{ri*gamsa”};

cas brg = cog brg + 3 + 4 + £5;

=

= acos{cos brg)*180/pi;



function [taul,tau?] = tausixs,xrl,xrZ,xc3,c)
function [taul,taul] = taus|xs, =0l xr?,xr3,c)

iMpoT
ES
xril
xed
xr3
c

three dim. vector of source position
three dim. vector of receiver 1 position
three dim. vector of ceceiver 2 position
three dim. wvector of receiver 3 position
speed of sound

Computes pair of Cime delays f[or three sensors. They are
(TOA 2t sensor 1 - TOA at senscr 2) and (TOh at sensor 2 - TOA at
sensor 3.

Created: 27 June 1291, Ben Rosen, Atlantic Aerospace Electronics Corp
Last modified: 1 July (991, 8Hen Rosen

i R R W

teul = Time delay(xs,xrl,xrl,c};
taud = time _delayixs,xx2,xrd,c);



function t = travel time(xs,xr,cl

function t = travel Cime(xs,xr.C)

INPUTS
xs — three din. wector of =ource position
xr - (N x 3) vector of randomized recelver position
c — speed of =ound

fonction td computes the transit time of a signal undergoing straight
line propagaticn between & source and receiver
Created 27 June 1951, Ben Rosen, Atlantiec Xercspars Electronics Corp.

C R N

Ilrr,ce]=size(xc];
[re;csl=size(x=);
if {rs == 1)
fd = ones{zx;L];
X3l = jd*us;
xrl = XI;
e
if {zzr = 1]
id = coealzm,11;
xrl = id*xz;
x3l = =ms;
end;

g = =zr] - x=s1:
Ep = du.*dx;

tepl = Fp*J1 1.-13";
t = sqrt(tpl) fe;



3

AT compotes tThe bias and stapdard deviation of measured range a5 &
¢f parameter noise standard deviation.
af this process are:

&
BS

Set op ocuter leap of range for fixed bearing.

Set up vector arcay containing position of scurce as & furctionm
of rarge and bearing.

2] Set up 3 vector arrays contalsing nominal pesition of receivers.

=

The source position is defined by the range and bearing with respect
to the nominal center of the array.

3) set up 3 vector arrays contalning known offsers of true receiver
positions from nominal positions.

4) Calulate true time delays based upon true geometsy.

%) Calculate measured range and bearing when receiver positions andlac
tine cdelays are randomly wvaried.

&) Write the pertured parameters and perturbed range/bearing to an
aATrTAY.

7 PIDI‘;TEH BETEY .

Lreatec 16 July 1521, Ben Rosen, Atlantic Rerospace Electronics Corp.
Modified 22 July 1991 to loop over multiple ranges, and also processes ase
now wectorired

Ll U

RARGE = [1000 2000 5000 7500 100C0);
nr = leéngth (RARGE);
MAX RANCE = 40000.0 % merers

fbearing = 50; %degrees

bearing = 50; Wdegrees

DE = DO; idegress

rorg = pifiB0*bearing:

rDE = pi/IB0YDE;

tUnit wector to source location

ru = [coairbrg)*cos{rOE) sinirbrg)*cos{zDE) sin({=DE)];

LEN=ED;
LER=120;
LIEWN=240;

§ SET UP ARRAY GEOMETRY
xra = |[-LEN [ 0); %meters
xrm = [0 0 0]

xrf = [LEN 0 0);

L

& FNOWN SENSOR POSITION OFFSETS
da = [0 D D);

an = [00 0);

daf = [0 D 0);

¥

: Compute true receiver positions

Xcad = xzra + da;
Hemd = ¥Nrm o+ dmg
xefd = xprf + df;

% COMPUTE GATE VALUE BY SETTING UP MAXIMUM RANGE

XS _gate = MAX RANGE*ru + xrm; % cartesisn location of paximum range
% Compute nominal array lengths

11 = range ixzf, xrm);

12 = range{xmm,xra);

a = 12/11;

c = 1500; imeters/sec
- & ;|

- T

]

M == T



zardi’nornal’};
nt = 4000; WNumber of sanples per experiment

VCEL SIG = .02: % millisec

AMAY SI6 = 2.0; § millfigas

MIN SIG = .0005; % millisec

MAX SIG = 10.0; % millisec

NSIG = BO:

Ysigmatay = OEL SIG:DEL EIE:M___EIEJ

signatau = logspace (1og10(MIN_STG}, logll (MAX SIG),NSIG);
signarap=sigmarac’ F1000.0; % transpose and converrt to seconds
[rs,ce]=size (signatau);

SIGLDOP = ra; WNumber of different variances

i

caul gate,tau? gate] = teesi(xs gave,xrfd srmd, xrad, c);
Vdelta = taul - tau2/fa; = o i
GATE = tacl gate - taul gate/a

nl = randint,1});
n2 = rand{nt,11;
nd = randint, 11}

datar _bias = [];
datar std = [);
datab bias = [}];
darah std = |];

SOUTER LOOP OVER RANGES

for n=l:nr;
rang = RANGE (a)
clear taulsaw;

v CALCUIATE SOURCE POSITION:

X3 = rAgUIu ¢ xEemg

5

A Compute true time delays

L

[taul,tan?] = taus(xs,xrfd, xrod, xrad, ) ;

& Compute approximate bearing using far-field bearing eguation.
¥ Sclve for approximate range and bearing using far-field approx.

meas_brg = wic bearing(tasl,tau?,c,11,12,df,dn, 42, 10000040,DE) ;
f Is 1000 kn far encugh?
:‘"5.,'-'"'! = wic_range{taul,tau?,c,l11,12,df,dm, da,meas bxrg,0.0);

r hiag = [1:
r_std dev = [];
b bias - [1;

b std dev = [];
AINNER LOOF OVER MOISE VARIANCES

for isig=1:SIGLDOP;

rand |* sead’ ,0)

% Create zero mean nofise vectors

noisel = sigmatac{isig)*nl;

noised = sigmatau{isigl*n2;

noisel = sigmaraui{isig]*ni;

§

taulp = tacl*ones(nt,i] + naisel - mnoised;

—r e e T e ] - o — — -



delta = taulp - taulZpfa;

b = wic bearing(taulp,tauip,c,11,12,df,dn,da,abs(meas_rng) ,DE};
r = wic_range{taulp,taudp,c,11,12,df,dn,da,bearing, 0.0},

mask = [(delta-GATE) >= 0.0);

facror? = 1.0/meanimask);

factor = sqrtifactori);

r biss{izig) = mean{mask_*r)*factord - mng;

b mutiam] = meanib) = bearing;

E “srd | deviiszig] = stdimask."r)"*factor;

b_std _deviisigl = stdibl;

AEND INMER 1LOCP

datar_bias = [datac_bias c¢_bias'];
datsr std = [dazar =td = !td dev’ |
datab _bias = [datab bias b _bias');
datab atd = [datab . ard b l"’d aave |
end:

W END OUTER LOO®

]

sigmatau = 1000*sigmatau; \convert to milllseconds.

RCLEANUP

clear al; clear n2; clear ni;

glear noisel; clear noise?; clear noiseld;
clear r bias; clear r std dev; clear b bias;
clear b _std_dev; clear r; clear b;

clear mask; clear delta;

clear taulp: clear taudp;

end;
cla;

lim = [loglO{MIN SIG) loglOMMAX SIG) 0 £]:
axis(lim);
ibtitle = sprintf ("AARGE BIAS w3 TIME DELAY UNCERTAINTY');
Estitle = sprinmtf{"RANGE STD. DEV. vs TIME DELAY UNCERTAINTY'):
stitle = sprintf ("TIME DELAY UNCERTAINTY SENSITIVITY (merers)®):
subplot {211}
loglogisigmatau, abs (datar_bias));
AWtitlefbtitle];
titlel{sticle);
xlabel ("Time Delay 5td. Dev. (msec)'|:;
yilabel ("Range Biaz®);
% write out annotations
xs = .01;
ys = .025;
a = gprintf("Bearing - §3.0f (degl’,.bearingl:
text (xs,ys5,8,"5¢");
yva = . 005;
s = sprintf(’Sensor Spacing = %3.0F (m}*, 11};
text (x5, ys,3,"83c");
grid:
imeta junk;
subploe (212) ;
loglog(sigmatan, datar_stdl:
Rtivie(arivlie);
ixlabel ("Tine Delay Std. Dev. (msec)™):
ylabel ["Range Sigma');

L 1 x=x = .01;

% I = .0d45;

L s = sprintf|'Bearing = %3.0f (deg)”,bearing);
% text (X8, ¥S,=,"s5c");

% j"l = 017

L #
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L} text {xs5,vs,8,"sc”);
gridy

iners;

imprint {* junk’)

subplioe {111} ;



function b = wfc_bearingitaul,tav?,c,11,12,df,dn, da, rng, DE)

% function b = wfc bearing({taul, tanl,c,11,12,4f,6m, da, rng,0E)

¥ Computes Dearing To targel using wave front curvature

¥ sequation.

|

i INPDTS

L1 taul =~ neasured time delay of sensor 1 relative to sensor 2
L ] tau?2 - measured time delay of sensor 2 relative to sensor 3
% c - speed of sound

L} 11 - pnominal distasce from sensor 1 toc 2

1 12 - nominal distance from sensor 2 to 3

: £ - range to target

% Created: 1 July 1531, Ben Rosen, Atlantic Aecospace Electonics Corp.
% Last Modified: 1 July 1991, Ben Rosen

a = 12/11;

ap = a/f{a+l);

L = c*afilr|1+4a);

gamma = df - dm - 1/a"2* (da=-dm);

xi = df + 1/a*da;

f2 = gaul + taunifa“2;

DE = {(pi/180.0)"DE;

cos_brg = -f1*(£2 - 0.5%c* (taul."taul + tau2.*tau?/a/fa)./mgl;
b = acea{cos brg);

[row,col)=size(b);

conz = =in{rDEY*agnes (cow,col);

ru = [con(b).*cos (rDE} sin(b) .*cosizDE)|;
ra = [ru cons];

£3 = ap*xi(1l/ng;

f4 = c*ap/rog/ll+T2. * (ru*dnme’);

£5 = = ap/il*{zu*ganra’);

cos brg = cox brg + £3 4 £4 + £5;
b = acosi{cos brg)*180/pi;



function [tanl,tsul?] = tausixs,xrl. xx?, xr3,c)

i fonction [taol,tvau?] = tausixs,xrl,xr2.xri, c)

INFOT
xs - three dim., vector of source position
xxrl — three din. vector of receiver 1 position
xrd - three dim, vector of receiver 2 position
xr3 - three dim. vector of receiver 3 position
[ = = spegd of sound

Computes pair of time delays Tor three semsors. They are

{TCA at sensor 1 - TOA at sensor 2) and (TORA at ssnaor 2 - TOA as
sensor 3.

W

% Crested: 27 June 1991, Ben Rosen, Atlantic Aerospace Electronics Corp
% Last modified: 1 July 1991, Ben Rosen

taul = time delay(xs,xrl, xrd,cl;
taui = time delayixs, xr2,xr3, c);



funcrien £t = travel time{xs,xr,c)

functior t = travel time(xa;xr,c)

INPUTS Sk
x3 = three dim. wector of source position
xr = (B x 3] vector of randomized receiver position
Cc - speed of sound

function td computes the transit time of & sigaal undergoing straight
lipe propagation between a sgurce and recelver

Created 27 June 13951, Ben Rosen, Atlantic Asrospace Electronics Corp.

L N

[z, cr]=size (xx);
[rs,cs]l=sizelxs);
if Izg == 1)
id = opnes(rr;1);
zsl = fid=xs;
xrl = xr;
end;
i? zrr == 1}
id = onesa(rs,1);
=xrl = jd*xr;
xs]l = x5
end;

dx = wrl - x=1;
tp = du.*dx;

tpl = ep*fl 1 1]*;
t = sgrtitpl)/c;



CALC STAT computes the bias and standard devistion of measured range as a
function of parameter noise standard deviation.
The steps of this prooess ars:

B) Setr up outer loop of range for fiwxed bearing.

1) Set up wector array containing position of source as & function
of range and bearing.

2) S5et up 3 vector arrays contalning nominal position of receivers.

The source position is defined by the range and bearing with respect
to the aominal center of the array.

3] 2et up 3 vector arrays contsining known offsets of true receiver
positions from nominal positioms.

4) Calulate croe Time delays based upon Ttrue geometry.

5] Calculate measured range and bearing when receiver positions and/for
tine delays aAre randomly varied.

&) Write the pertured parameters and perturbed range/bearing to an
arcay.

7] Plot the array.

Created 16 July 193], Ben Rosen, Atlantic Rerospace Electronics Corp.

Modified 22 July 1931 to loop over multiple canges, and also processes are
oy I'Eil:tﬂ!ilﬂ'ﬂ

C T A T

BEANGE = [1C0GD 2000 5000 7508 1040400]:
ar = length{RANGE);
HAN RANGE = 4J000.0 % neters

tbearing = 90; \degrees

bearing = 50; %degrees

DE. = 43 fYdegrees

rthrg = pi/l180*bearing;:

fDE = pi/1A0*DE;

i0nit vector to zource location

ru = [cos|rbegl *cos(cDE) sin(rbrg) *co={(r0E} =in(cDF)];

LEN=£0;
RLER=120;
RLFN= 240

ENOWN SENSOR POSITION OFESETS
oo 01;
[0 0 01;
(00 0);7

SRE

ute true receiver positions

= xra + da;

¥ COMPFUTE GATE VALUE BY SETTING UP MAXIMUM RANGE

X3_gate = MAX RANGE"ru = xrm; ¥ cartesian location of maximm range
% Compute noninal array lengths

11 = range(xrf,xrm);

12 = rangs (xrm,;xra);

a= 12/11;

¢ = 1500; \meters/asec

i‘FlF!! = 11



cand ("normal’);
nt = §000; tHumber of samples per experiment

RDEL SIG = .02; % millisec

WAX_SIG = Z2.0; @ millisec

MIN_SIG = .0005; % millisec

MAX _S1G = 10.0; % millisec

H5IGC - &0;

fsigmateu = DEL SIG:DEL SIG:MAX S16G;

sigratau = logspace (logll(MIN _STG),logld IMAX_SIG),NSIGH,
signatav=sigrmatau’ f1000.0: % transpose and convert ro seconds
lrs,cs|=size{sigmatau);

SIGLOOP = rs; “Mumber of different wariances

]

(tasl gate,tau2 gate] = tausixs_gate, xcfd, xrnd,xrad,c);
Hdelta = taul - tau2/a;
GATE = taul gate - tau2 gate/a

nl = randinc,1);
n?2 = randipc,1);
nd = randint,1);

datar_bias = [];
datar std = [];
datab biasz = [};
datsb std = [};

WOUTER LOOP OVER RANGES

for n=1:nr;
ng = RANGE (n]
clear taulsav;

t CALCULATE SOURCE POSITION;

X8 = FRg'ru * AL

%

i Compute true time delays
1

[taul,tau?] = tausi(xs,xrfd, xrod, xrad, ol ;

¥ Compute approximate bearing using far-field bearing squation.
% Solwe for approximate range and bearing using far-field approx.

meas brg = wic bearing(tacl,tac?,c,11,12,df,dm,da, 1000000, 0E) ;
A Is 1000 km far enough?

meds rag = wic range H:.nnl.!;mi,crllrlz,dr.hﬁ,m_hm,ﬂ.ﬂl:
L1

r bias = [];

£ atd dev = [];

b bias = [];

_std_dev = [];
SINNER LOOF OVER NOISE VARIANCES

for isig=1:SIGLOOF;

rand|(* seed”’ Q) ;

% Create zero mean noise VeCLars

noisel = sigmatsu{isiglenl;

noised = sigmatauv{isig)*n?;

noised = signatau{lsig)*ni;

%

taulp = taul®onesint,1) + noisel - nolse?;
tandp = raul*onesint,l) 4+ anise? - npizeld:



delta = raulp - tanZp/fa;

b = wic_bearingitaulp,taulp,c,11,12,df,dn,da,abs(meas rng),DE);
r = wic_rangeitauvip,tau2p,c,11,12,df,dm, da, bearing, 0.51;
nask = {(delta-GATE] »>= 0.0);

factord = l.0/mean (mask)

factor = sqrt (factor?);

r biss{isig) = meaninask._*r)*factor? - rng;

b bias{isig) = mean(b) - bearing;

r_std dev|isig) = stdimask.*r)*factor;

b std . deviisig) = std(bl;

end;

SEND IRRER LOOP

dstar_bias = [datar bias = bias’];
d-lu.r std = [datsr std r std | dev* ]}
datab bias = [datab bias™b bias’];
::.ll.'h std = |datad std b _std dev’];

Y END OUTER LOOP
h

signatau = 1000*sigmatau; ‘convert to milliseconds.

\CLEANUP

clear ml; clear a2; clear ni;

clear nolael; clear nojise2; clear noised;
clear r bhias; clear r srd dev; clear b - bias:
clear b std _dev; clear r; clear b;

clear mask; clear delra;

clear taulp; clear taulp;

and;
elg;

l1im = [1og10(MIN SIG) loglO(MAX SIG) O 4);
axisfliim);
btitle = sprintf ("RANGE BIAS vs TIME DELAY DNCERTAINTY’):
tstitle = sprintf ["RANGE STD. DEV, vs TIME DELAY UNCERTAINTY’):
stitle = sprint{(“TIME DELAY UNCERTAINTY SEMEITIVITY (meters)');
suboliot {211);
loglogisignatau,abs (datar bias));
ftitle{btitle);
titledstitlie);
xlabel {"Time Delay S5td. Dew. (msec)’):
ylabel (" Range Rias’);
¥ write out annorations
xs = ,01;
vs = _025;
5 = spriotf['Bearing = %3.0f (deg)’,bearing);:
text (x3,y3,3,"8c");
ya = .005;
s = sprintf|’Sensor Spacing = W3.0f (m)*,11);
text (xs,ys8,s,"8c");
gris;
Aneta junk.
subplor (212);
loglog (sigmatau,datar_std);
Atitle(scitle);
- Exlabel ("Tine Delay S5td. Dev. {(msec)”):
ylabel {(“Range Sigma’};
* wvrite cut annotations
x3 = 017
ya = .D4&5;
up:tntft*ﬂalring = 33.0¢ |deg)’,bearing);
text (15, ¥5,5, 3" };
¥ys = Q17

e = =nrinrFi'Crnessnr Tonamnfi=as = 1% == —f B T

L A NN



&
grid;
tosts;
kmprint (" junk®)
subplot (111);

text (xs,¥s5,5, "sc’');



function r = wic range (tawl,.tavd,c,11,12,df,ds, da,bearing,DE]

: fn:EtT;un r = wic range(taal,tauvi,c,11,.12,df,.dn,da, bearing, DE)
N

taul — time S=lay hetween forvard sensor and middle szensor
tau? - time delsy between middle sensor and aft sensor
11 - distance to forward sensor from middle sensor

12 = distance to aft sensor from niddie sensar

€ — speed of soumnd

df - offset in position of forward sensor

dm = offsar in position of middle sensar

da - offset in position of aft sensor

bearing - source bearing angle (deg)

DE- source depression/elevation angle (deg)

R G G R W

Calculates Rangs to Target Using Wavefront Curvature Algoritha
t Created 27 Jume 1391, Ben Rosen, Atlantic Aerospace Electronics Corp

a=12/11;
n=0.5*11"2*(1.0 + 2 - (c*taul/11).*Z - a*(c*tau2/13) .°2);
dt = taul - taulsfa;
bete - df - da;

lbeta = ll*betail);
alpha = df - da + [da - dm}/a;

rhear = (pi/180.0)"bearing;

2E = |pir180.0) *LE;

[row, col]=size (beacing);

= Sin(rDE) *on=s{ome, coll;

{cos (rbear) ."cos (rDE) sin{rbear).*cos(rDE}];

[ro consl;

ru*dm® ;

ra*alphsa® o

ru*dm® ;
= —. 5" (a+11/a* {rm*2);% + 0.5%(a+l)/a*(dm*"dn*);
dl = 0.5*4f*df';
43 = 0_S"da*da’ /&;

r= (n + lbeta + ctdt*ern + di + 43 + m2)./lc*d: + ra);

Tk



function b = wfc bearing(taul,tau?,c,11,12,df, ém,da,; rng, IE)

i function b = wic bearing(tanl,tsul,c,11,12,df,ds,da, rng, BE)

% Computes bearing To target using wave frent curvaturce

% equation.

L]

& INPOTS

% taul - measured time delay of sensor 1 relative to sensor 2
| tau? - measured time delay of sensor 2 relative to sensor 3
! [ - spesad of sound

% 1n = nomingl distance fron senssr 1 *o 2

] 12 = nomiral distance from sensor 2 to 3

% g - Fange Lo Larget

&

% Creaced: ] July 1991, Ber Hosen, A:slantic Aerospace Electonics Corp.
¥ Last Modified: 1 July 1991, Ben Rosen

a=1F/1i;

ap = pf(avl);

fl = c*a/l11/{1+a);

gamna = df - dm - 1/a*2* (da-dn);

x2i = df + 1/fa*da;

£2 = taul + taudfa*2;

=DE = (pi/l180.0)*DE;

cof_brg = -f1°(£2 - 0.5°c*(taul."taul + tau2.*tauZ/a/a)./ rng);
b = aras{cos brgj;

|zow, col]=size(b);

cons = sin|[rDE)*ones{raw,col);

ru = [gos(b].*cos|zDE) sinib).*cos{rdEl);
2 = [ru cons];

£3 = ap*xill) /feng;

£4 = crap/rngfllv£2.* (rudm’);

5 = = apfli*(rugamma’);

cos brg = cos brg + £3 +« 4 + £5;

B = acos{cos_brg) *180/pl;



function [tawl,tau?] = tapsi{xs,xrl,xr?, xr3,c)

funetion [taul,rac?] = taus(zrs,xrl,xr2,xrd, c)

IN=0T
28 = three dim. vector of soucrce position
xrl - three dim wvector of receiver 1 position
xrZ = three dim. wveactor of receiver 2 position
xr3d = three dim. wvector of receiver 1 position
c - spesd of sound

Computes pair of time delays for three sensars. They are
ITOA &t sensor 1 - TOA at sensor 2) and (TOA at sensor 2 - TOA ar
sensor ).

LN T

Created: 27 June 1931, Ben Rosen, Atlantic Aerospace Elactronics Corp
Last modified: 1 July 1391, Ben Rosen

taul = tine delay(xs,xrl,xc2,c);
taul = time delay(xs,xr2, 2r3,c);



fenction t = travel time(xs,xr,C)

functipn t = travel timeixs,xr,c)

INPUTS
x5 - three dim. vector of soorce posirion
xr - (N x 3] wector of randomized receiver positisn
¢ - speed of sound

function td computes the transit time of a signal undergoing straight
iine propagation between a source and receiver
Created 27 June 1951, Ben Rosen, Atlantic Aerospace Electronics Corp.

] G G g g

izr,er]=size (xT);
frs,ce]l=siz= (%3} ;
Lf (zrg == 1}
id = ones(rr,l);
x8] = fdvxs;
Hrl = xr;
end;
if (er == 1)
id = gnes(rs,1);
®*rl = id*xr;
nE5]l = xa;
end;

dxy = xrl — xsl;

tp = dx.*dx;

epl = £p¥*[1 1 117;
t = sqriitpll)/c;



function td = time delay(xs,xrl,xr2,c)

% function td = time delayixs,xrl,xri,c)

v\ INFUTS

x5 = three-din. vector of source position

xrl = three-din. vector of recelver 1 position
xr2 - three-din. vector of receiver 2 position
< - gpeed of sound

Computes the tine delay of arrival of a signal from one scurce to two
different receiving sensocs. (TOA sensor 1 - TOA sensar 2).

Created: 27 June 1531, Ben Rosen, Atlantic Aerospace Electronics Corp.
Last modified: I July 1991, Ben Eosen.

R e

tl = travel time(xs,xcl,cl;
ti = travel time(xs,xr2,c);

td = tl-t2;
Yeyboard;



4! /fbinfcah —fx

#PROCESS -acript

iExecutive routine for time-delay estimation analysis.
set SHR = ]

sat EW = Z000

set TS5 = 100000

goto 51

=

make nolse

exit (0]

R

make signal SSNR SBW SFS
taxit (D)

<3

add wgn sens]l signall sal

add wgn sens? signall sn2

set D = “echo “SBM/SFS" | bec -1"
peak_correl anl an2 200 5D

mxde {0}



#!/binfcsh -fx

#HMAXE NWOISE - script

This script file generates two 200000-length gauesian white noise seguesnces.
It does this by generating & single 400000-length g.w.n sequence and
splitting it into two egual halves. Z000D0 sanples represents 20 second at
10 ¥hz Sampling Rate. This will represent the sampled gaussian noise at twe
sensors, It uses the MATLA® random number generator since I don’t think the
wgnlQ4 generator used in SYNTH bas 2 long encugh period.

-

set outfilel = 'wgn_sensl’

set outfilel = "wgn zensd’

st nexp = 200 #¥unber of Experiments (.1 seconds sach)

set nsaspec = 1000 #Number of samples per experiment

set nszamps = ‘echo “Smexp*$nsampc” | boc -1' #Number of sanple per sensor
set sanp rate = 0001

52t z3d = 0

set nsamps? = “scho "Snsampa *2 " | bo -1"

Cat <<ECF >Cempo

rand [ normal’ )
rand [ seed” , 55di ;
N = Snsampsl;

E =rand(N;1);
gd = rand(’ased’)
save =d =d

save R R;

EOF

#invoke MATLAE
matlipgh < Cexpo

I Cemps
matdat R ond

dat_change dims rnd Sasamps?

rm R.mat #8ig file so get rid of it
satdat sd sdi

pick adl seed -D

e sd

cndat sdl

set 83 = ‘prdat -n seed’
set 5d = S5s3(2)

datkey sanpling period=".0001" rnd

pick rnd Soutfilel O+$nsamps -£

pick rod Souvtfile? Snsamps+Snsamps -f

rndat rnd

- #channelize ootfiles to do meltiple experiments
dat_change dins -c Snexp Soutfilel Sasaspc

dat change dins —c Snexp Soutfilel Snsampc
exit (0)



#!/Mbinfcsh -fx

$MAKE SIGMAL - script
set SHE = $1

sel BN = 52

set F5 = £3

sel fnfile = wgn

cat <<BEOF >ntemp.m

[a,b] = filt_coef |55HR, 58BN, SF5);
A= lab);
save A A;

EQF

mxtiab <ptenp.m
matdat A A.datr

pick R.dat a.dat 0+1
pick A.dat b.dat 1+1
rndat A.dat

rm A.mat

Im ntemp. B

tLoad filter Coefficients irto dac-files
ftecho "0.83%> a #5000 Bz =N

gecto "0.964"> a2 #1000 Bz BN

fascidat -f - & a.dat

#FOR 1000 HZ

#echo ".B3E" > b #Abour 10 db
fecho " 47" > b #About 5 db
fecho =.297" > b #About I dbh
§FOR 3000 HZ

fecho *1.74 > b #Aboor 10 db
kacho *.98™ > b #About 5§ 4b
fecha ", 62" > b #aboor 1 db

Fascldat =-f - b b.dat

i -rf &
irn —=f &

set tauc = ‘echo "1.0/5FS" | bc -1' #sampling pericd of continucus signal
set N = 20000 FTwo/tenth's second of data

#This just divides by 2 and gets an integer

echo "gcale = 0" > durmy
echo "SH/2" >> dumey
achs "gquit® >> dumny

set N2 = ‘bec -1 dummy®
e dummy

#invoke MATLAEB to generate white noise
Hget seed

set 85 = ‘prdat -n seed"

set sd = §s5s5(2]

#Synthesize White Noise to Pass to Filter

cat <<EJOF >rtempo

rand " nocaal®);
rand |* seed’ , £5d);
® = 5H;

R = rapd(M,;1);

8d = rand|’seed');
save R R

==7a =4 sd



EQF

binvoke matlab
matlabh < Temoo

ra tampo

patdat R S$infile

re B.mar

dat_change dims wgn §N
natdat sd sdl

rn =5d.mat

pick sdl seed -0

cmdat sdi

# Filter White NHoise to Make Colored ¥oise which is cur sigmal
iir Sinfile a.dar b.dat 5]
cpdat 51 52

#5hi ft by 5005 points (about .05 seconds at 100 Ehz)
sat tshift = 5005

colfift Stshift =2 =3

fzerdo out first Scehifr points in a3

inaert =¥ O+5cshifr £.0 =3

pick 3l s4 DeSN2Z

pick 531 =5 D+5N2

iDecimate by 10 to get 10Khz Sampled Signal
pick 54 signall :/10

pick 55 signal2 :/10

rmdat =51

emcdizsr a?

reedat 853

iRt =4

rmdar 85

exit (0]



$einfesh —fx
fPERX CORREL - script
set nchan = 53

sar 51 = 51
et pZ = 53

ser roN
fet D=

£fft &sl

= 54
50605

51

cndg 81 Sle

sodat 51

fer Sa2
sml 5lc

rmdar 52

S
Sz 2

rmdat Sle

iffr X =

rmdat T

raal T ®r

radat z
soctdat

ICreate

= -A 1 -1 corr pk zxr pkval
dat-file to contain intscpolated peaks

insert -C Sochan —f 0 . interp pk

et inde = 0

while | Sindx < Spchan )
pick zr zrremp ch {(Sindx):{Fimdx}
pick cnrr1pt cptemp ch I.Hnd:i {3 indx )
Ser v = -n cpremp*
et pi..'m:l.: = Svx|d]
€ pkstrt = Spkindx - 4
# pkstp = Spkindx + 4
set ninterp = ‘echo " (Spkstp—Spkstzt)=1iD + 1" | b -1*
lagrange -o 5 Spkstrt, fphstp,$ninterp zrtemp zril
sortdat -r -a 1 -7 ist_pk zrll intpkval
fet vx = ‘prast -n int pk’
set int pkindx = SvalZ]
sex true pk = ‘echo "Spkatrteld + Simt pkindx™ | bo -1°
insert -f -V Sindx+l Stcoe pk ioterp pk
@ ipdx #= 1
and

datmat interp pk IF
#rndat interp ph
rodiat zrtemp IT
rmdat cptemp

rmdat zrll

rmdat intpkval
rmdat int pk

cat <<glFf >mtemp.m

load 1IP;

IFIL)=1];

|mn, st,per]=delay stac|IP,$D,S5=-8BN);

o
L | 4

Fer
EOF

matlabh <pterp.m
e ntenp.m

e=xir (0]



ADELAY STAT is a youtine which computes the mean and standard deviation of a
bmatrix of values while editing cutliers by uasing a t-sigma cutoff.

|my &, pec]=delay stat [x, xtrue, rBW)
Inpot
x Nrow-x-Mcol array
xrtru®s True walue of x
Output
m lrow=-x-Mopl array contalning sean of sach coloen
3 lrow-x-Mcoi array containing std. dev. of sach column

per lrow-x-Mcol array containing percent of each column satisfying
Criterion.

Created 07 Ociober; 1991 by Ben Fosen
Atlantic Aercspace Electronics Corporation

e R R R R e

function [m,s,per]|=dslay stat (x,xtrue,rBW);

t = 1.0/zBW/2;

dx = abs{({x - xtruell:
inliers = findidx <= £);
outliers = findidx > t);s
i = x{inlisrs);

%0 = x|outliers);

maak = [dx <= t);

m= mean ixi);

s=stdxi);
prr=meani{nask) *100;



